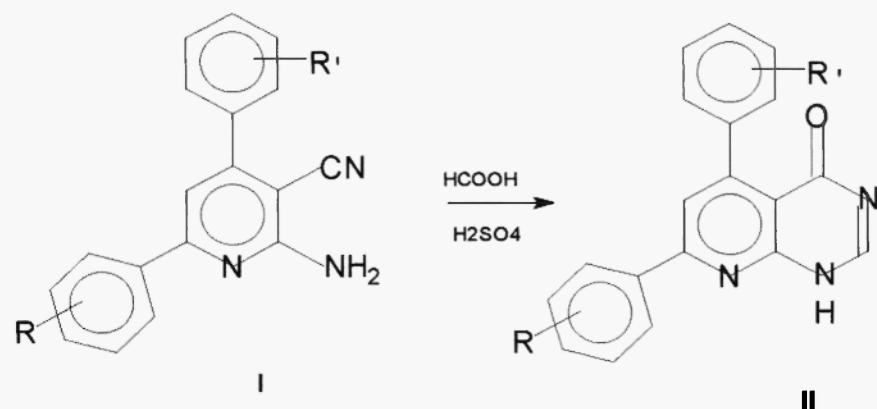


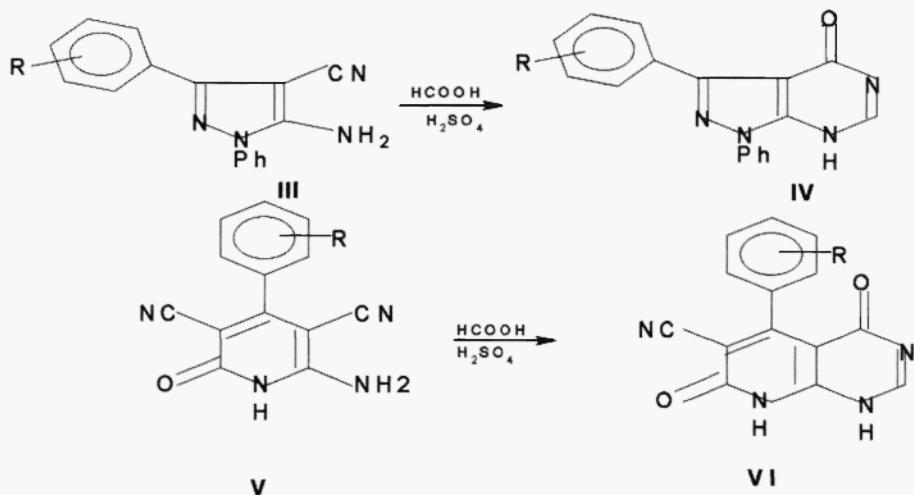
ORTHO AMINO CYANO AROMATIC COMPOUNDS AS PRECURSOR FOR THE SYNTHESIS OF SOME NOVEL HETEROCYCLIC COMPOUNDS

V.S.Rao* ^a, S.V.S. Arun Kumar Gupta ^a and B.S.Reddy ^b

a: Department of Chemistry, Birla Institute of Technology & Science, Pilani, Rajasthan, India.

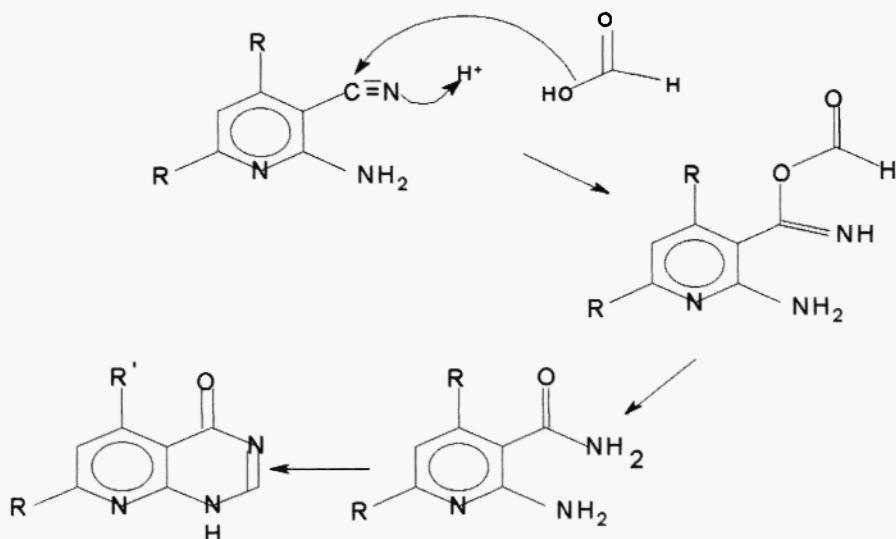
B: Suven Pharmaceuticals, Hyderabad.


Abstract: Pyrimidine-4(1H)-ones from 2-amino-3-cyano aromatic compounds were prepared in the presence of formic acid under strong acid catalyst. The intermediates and the final products structures were confirmed by spectral and elemental data.


Introduction:

2-amino-3-cyano aromatic compounds are used as a building blocks for the synthesis of fused pyrimidine-4(1H)-ones, which are intermediates in the synthesis of antipyretics, diuretics, anticonvulsants, sedatives, coronary dilators and anti-cancer agents ¹⁻⁴. Historically quinazolines-4(1H)-ones have been prepared by Neimentowski reaction of anthranilic acids ⁵. Other literature methods were cyclisation of ortho eaters ⁶, Gold's reagents ⁷, ethoxymethylenemalononitrile with 6-amino benzoxamides ⁸, amonolysis of benzoxazines ⁹, synthesis of quinazoline derivatives via, palladium catalyzed reductive cyclisation methods ¹⁰. Literature reveals that ortho cyano amino compounds are often more readily accessible synthetic targets than the corresponding anthranilic acids

Synthesis and Results:


For the first time, we are reporting a new cyclisation method on 2-amino-3-cyano pyridines, pyrazolines and pyridones systems, which affords good yields of pyrido-(2,3-d)-pyrimidine-4(1H)-ones, (II), Pyrazolo-(3,4-d)-pyrimidine-4(7H)-ones (IV) and pyrido-(2,3-d)-pyrimidine-4,7-(1H)-diones (VI) respectively. The advantage of this method is simpler experimental conditions easy isolation procedure, shorter reaction times and delivery of the desired product in good purity with quantitative yields⁻¹⁴.

Cyclisation of 2-cyano-3-amino-5,7-diaryl pyridines (**I**), 2-cyano-3-amino-5-aryl pyrazoles (**III**), 25-dicyano-3-amino-4-aryl-pyridine-6-ones (**V**) with formic acid in the presence of a trace amount of sulfuric acid at 110°C for 25 min, gave compound **II**, **IV**, **VI** respectively. The structures of the compounds were established on the basis of IR, PMR and Mass spectral data and the result of elemental analysis (see table-I). The PMR spectra of compounds **II**, **IV** and **VI** are quite interesting in that the protons N-H and vinyl protons are observed in the range of 7.5 and 8.3 ppm respectively¹⁵.

The synthesis of the starting compounds **I**, **III** and **V** was carried out according to the literature procedure. The reaction is believed to proceed via the formation of an amide intermediate. This intermediate is isolated and synthesized on a different route. Compounds on further cyclisation under the same experimental conditions gave **II**, **IV** and **VI**, which was found to be identical with compounds obtained earlier.

SCHEME-II

TABLE-1: Physical, C,H,N analysis

Compd. No.	R	R'	Yield (%)	M.P. (C)	Mol.for (Mol.wt)	Analysis found (Calcd.)		
						C	H	N
II	CH ₃	H	76	230-31	C ₈ H ₇ N ₃ O (161)	59.60 (59.62)	4.34 (4.29)	26.08 (26.10)
	C ₆ H ₅	H	78	199-202	C ₁₃ H ₉ N ₃ O (223)	69.89 (69.95)	4.03 (3.99)	18.81 (18.84)
	C ₆ H ₅	C ₆ H ₅	75	210-12	C ₁₉ H ₁₃ N ₃ O (301)	75.69 (75.74)	4.29 (4.31)	13.87 (13.95)
	4-ClC ₆ H ₄	C ₆ H ₅	78	216-18	C ₁₉ H ₁₂ N ₃ OCl (335.5)	67.89 (67.94)	3.50 (3.57)	12.48 (12.51)
	C ₆ H ₅	2-Cl-C ₆ H ₅	86	240-42	C ₁₉ H ₁₂ N ₃ OCl (335.5)	67.90 (67.94)	3.56 (3.57)	12.44 (12.51)
IV	H	C ₆ H ₅	77	216-18	C ₁₇ H ₁₂ N ₄ O (288)	70.80 (70.82)	4.15 (4.16)	19.40 (19.44)
	H	4-ClC ₆ H ₄	79	232-34	C ₁₇ H ₁₁ N ₄ O (322.5)	63.20 (63.24)	3.45 (3.41)	17.30 (17.36)
	H	3-NO ₂ C ₆ H ₄	71	240-42	C ₁₇ H ₁₁ N ₄ O ₃ (328)	62.15 (62.17)	3.30 (3.35)	19.55 (1950)
	H	2-ClC ₆ H ₄	81	222-23	C ₁₇ H ₁₁ N ₄ OCl (330)	61.79 (61.81)	3.29 (3.33)	16.91 (1696)
	H	4-CH ₃ C ₆ H ₄	80	198-99	C ₁₈ H ₁₄ N ₄ O (310)	69.65 (69.66)	4.45 (4.51)	18.10 (18.06)
VI	H	C ₆ H ₅	75	211-12	C ₁₃ H ₈ N ₃ O ₂ (239)	65.19 (65.22)	3.72 (3.76)	17.60 (17.56)
	H	2-ClC ₆ H ₄	61	205-06	C ₁₃ H ₈ N ₂ O ₂ Cl (273.5)	56.91 (57.03)	2.90 (2.92)	15.28 (15.35)
	H	3-NO ₂ C ₆ H ₄	65	234-36	C ₁₃ H ₈ N ₄ O ₄ (284)	54.96 (54.92)	2.77 (2.81)	19.80 (1971)
	H	4-CH ₃ C ₆ H ₄	67	217-19	C ₁₄ H ₁₁ N ₃ O ₂ (253)	66.35 (66.39)	4.30 (4.34)	16.51 (1659)
	H	4-BrC ₆ H ₄	70	254-56	C ₁₃ H ₈ N ₂ O ₂ Br (318)	49.00 (49.04)	2.46 (2.51)	13.16 (13.20)

TABLE - 2: Spectral data.

Compon nd No.	IR data (max)	PMR (ppm)
II	1645(C=O), 1590 (C=N) 3450 (N-H)	2.53(s,3H); 7.4(d ,J=7,1H); 7.68(d,J=7,1H); 7. 28(b,N-H); 8.12 (s, 1H)
	c. 1640(C=O),1580 (C=N) 3454(N-H)	6.95-7.15 (m, Ar-H, 10H); 8.15 (s,1H, N-H); 7.22 (s,1H), 7.56 (s,1H,Ar-H)
	d. 1640(C=O), 1575(C=N) 3380 (N-H)	7.2 (d, 2H, Ar-H); 7. 50 (d,2H, Ar-H); 8.31 (s, 1H), 7.95 (b, 1H, N-H) 7.05 (s,5H,Ar-H).
	IV a. 1630 (C=C), 1680 (C=O) 1590 (C=N), 3350 (N-H)	7.15 (s, 5H, Ar-H), 7.0 (s, 5H, Ar-H), 7.25 (b,1H, NH), 8,18 (s, 1H),
VI	b. 1615 (C=C), 1685 (C=O) 1600 (C=N) 3340 (N-H)	7.43 (m, 2H, 3'-H, 5'-H), 7.76 (m, 2H, 2'-H, 6'-H); 6.95 (s, 5H, Ar-H), 7.15 (s,1H, N-H) 8.20 (s, 1H)
	a. 1690 (C=O), 1620 (C=C) 1580(C=N), 3300-3400 (N-H)	7.90 (b,1H,N-H), 8.20 (B,1H,N-H), 8.25 (s, 1H), 8.15 (s,1H), 6.95 (s,5H,Ar-H).
	d. 1685(C=C), 1690 (C=O) 1590 (C=N), 3350-3400 (N-H)	2.80 (s, 3H CH ₃), 7.25 (d, 2H, 3'-H, 5'-H), 7.45 (d, 2H, 2'-H, 6'-H), 7.35 (s, 1H), 8.15 (s,1H), 8.70 (s,1H), 7.13 (b,1H, N-H), 7.23 (b,1H, N-H).

Experimental Section:

Melting points were determined on Mel Temp and are uncorrected. IR spectra were recorded in KBr on Perkin-Elmer spectrometer, PMR were recorded in DMSO-d6 and CDCl3 on Varian-Gemeini 200 spectrometer.

General procedure for the preparation of fused Pyrimidine-4(1H)-ones (II, IV & VI):

A mixture of 2-amino-3-cyano -aromatic compound (2 mmoles) was added in portion wise over 1 hr to a mildly reflecting mixture of 88% formic acid and sulfuric acid (1.0 gm) . After 15 min, the mixture was allowed to cool to 60 C , poured into crushed ice (100 gms) and allowed to stand for 15 min. The resulting precipitate was collected and washed well with water. Drying to constant weight provided **II, IV & VI** as an off white solid (80%).

Acknowledgments: One of the authors (SVSAKG) is thankful to Prof.Venkateswaran, Director, BITS, Pilani (Raj) , India, for providing the necessary research facilities.

References:

1. S.S.F.Burni, A.Castanzo, G.Guerrini, P.M.Ajello, G.Iavrsone and C.Martini, *Eur.J.Med.Chem.* 27, 985 (1992).
2. M.F.Hasan, A.M.Mounir, I.Salleem, J.M.Abdul Rahman and A.E.Mohammed, *Hetero cycles*, 38 57 (1994).
3. N.Singhal, I.S.Gupta and P.C.Bhansal, *J.Indian Chem.Soc.* 61, 690 (1984).
4. A.K.Sharma, A.K.Yadav and Lalit Prakash, *Ind.J.Chemistry*, 34B, 740 (1990).
5. V.Neimentoskii, *J.Pract.Chem.* 51, 564 (1895); W.L.F.Armarego, *J.Appl.Chem.* 11, 70 (1961).
6. M.K.McKee, R.L.McKee and R.W.Bost, *J.Am.Chem.Soc.* 69, 184 (1947).
7. K.Nagahara, K.Takagi and T.Ueda, *Chem. Pharm.Bull.* 24, 310 (1976).
8. J.T.Gupton, K.F.Correia, and B.S.Foster, *Synth.Comm.* 16, 365, (1986).
9. M.T.Bogert and W.F.Hard, *J.Am.Chem.Soc.* 28, 94 (1906).
10. M.Akazome, J.Yamamoto, T.Kordo and Y.Wantanhe, *J.Organomet.Chem.* 494, (1995).
11. M.Shah, P.Patel, S.Korgaokar and H.Parekh, *Indian.J.Chem.SOC.* 35B, 1282 (1996).
12. U.Hanefeld, V.W.Rees, A.J.P.White and D.J.Williams, *J.Chem>Soc, Per.Tran-1*, 1546, (1996).
13. A.H.H.Elghandour, M.K.Abrahim, F.M.M.Ali and S.M.M.Elshikh, *Indian.J.Chem.* 36B, 79 (1997).
14. G.A.Roth and J.J.Tai, *J.Heterocyclic.Chem.* 33, 2051 (1996).
15. U.T.Bhale Rao and A.Krishnaiah, *Indian.J.Chem.* 34B, 587 (1995).

Received on December 20, 1998